Seattle_weather

Welcome to the internet home of Asa Katida.


import datetime as dt
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sbs
from matplotlib.colors import ListedColormap
from sklearn import neighbors, datasets
from sklearn.metrics import confusion_matrix, classification_report, mean_squared_error
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

# https://www.kaggle.com/rtatman/did-it-rain-in-seattle-19482017/downloads/did-it-rain-in-seattle-19482017.zip/1
df = pd.read_csv('./seattleWeather_1948-2017.csv')
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 25551 entries, 0 to 25550
Data columns (total 5 columns):
DATE    25551 non-null object
PRCP    25548 non-null float64
TMAX    25551 non-null int64
TMIN    25551 non-null int64
RAIN    25548 non-null object
dtypes: float64(1), int64(2), object(2)
memory usage: 998.2+ KB
data = pd.DataFrame()
data['temp_max'] = df.TMAX
data['temp_min'] = df.TMIN
data['date'] = pd.to_datetime(df.DATE)
data['precip'] = pd.to_numeric(df.PRCP)
data['above_1'] = data.precip > 1
data['above_avg'] = data.precip > 0.25
data['any_rain'] = data.precip > 0
data['prev_temp_max'] = [data.temp_max[0]] + list(data.temp_max[:-1])
data['prev_temp_min'] = [data.temp_min[0]] + list(data.temp_min[:-1])
data.plot(x='date', y='precip')
<matplotlib.axes._subplots.AxesSubplot at 0x112597630>

png

data.plot(x='date', y='temp_min')
<matplotlib.axes._subplots.AxesSubplot at 0x112d9ceb8>

png

data.describe()
temp_max temp_min precip prev_temp_max prev_temp_min
count 25551.000000 25551.000000 25548.000000 25551.000000 25551.000000
mean 59.544206 44.514226 0.106222 59.544245 44.514461
std 12.772984 8.892836 0.239031 12.772956 8.892690
min 4.000000 0.000000 0.000000 4.000000 0.000000
25% 50.000000 38.000000 0.000000 50.000000 38.000000
50% 58.000000 45.000000 0.000000 58.000000 45.000000
75% 69.000000 52.000000 0.100000 69.000000 52.000000
max 103.000000 71.000000 5.020000 103.000000 71.000000
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 25551 entries, 0 to 25550
Data columns (total 9 columns):
temp_max         25551 non-null int64
temp_min         25551 non-null int64
date             25551 non-null datetime64[ns]
precip           25548 non-null float64
above_1          25551 non-null bool
above_avg        25551 non-null bool
any_rain         25551 non-null bool
prev_temp_max    25551 non-null int64
prev_temp_min    25551 non-null int64
dtypes: bool(3), datetime64[ns](1), float64(1), int64(4)
memory usage: 1.2 MB
sbs.pairplot(data.drop(columns=['precip']))
<seaborn.axisgrid.PairGrid at 0x1135e2eb8>

png

X = data.drop(columns=['above_1', 'above_avg', 'any_rain'])
y_above_1 = data['above_1']
y_above_avg = data['above_avg']
y_any_rain = data['any_rain']

X_train, X_test, y_above_1_train, y_above_1_test = train_test_split(X, y_above_1, test_size=0.3, random_state=123)
X_train, X_test, y_above_avg_train, y_above_avg_test = train_test_split(X, y_above_avg, test_size=0.3, random_state=123)
X_train, X_test, y_any_rain_train, y_any_rain_test = train_test_split(X, y_any_rain, test_size=0.3, random_state=123)